
15 Eigenvectors and Eigenvalues
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Figure 1: The matrix
[

3 24
4 7

]
acts on two eigenvectors.

Figure 2: The average Joe does not
get to be an eigenvector.

We’ve spent a good deal of time mapping the plane with matrices. We discovered that we could decompose
any invertible 2×2 matrix into a list of matrices which, under multiplication, are a sequence of transformations
of the plane. That is, we can interpret any such matrix as a sequence of reflections, rotations, shears,
stretches, and dilations. We can even reduce the list to stretches and reflections. Unfortunately, doing this
tends to be rather clumsy in practice. In any case, this decomposition method does not produce a unique
result.

We are now going to find a new way to decompose matrices. This method will have the virtue that if two
people decompose the same matrix, their results will be recognizably “the same.” This process is also much
easier to do.

Consider the matrix
[

3 24
4 7

]
. If you multiply a random vector like

[
4
7

]
by this matrix, you’ll get

[
180
65

]
. These two vectors have very different directions, as shown in Figure 2. But if you pick the “right”

preimage vector, you can get a vector which has the same—or directly opposite—direction, meaning that the

image is a constant multiple of the preimage. For example, if you pick
[

2
1

]
, then

[
3 24
4 7

] [
2
1

]
=

[
30
15

]

= 15

[
2
1

]
.

Similarly, if I pick
[

3
−1

]
, then

[
3 24
4 7

] [
3
−1

]
=

[
−15
5

]

= −5
[

3
−1

]
.

These two vectors
[

2
1

]
and

[
3
−1

]
are called eigenvectors of the matrix, and are characteristic to the ma-

trix. Their multiplications are shown in Figure 1. This matrix has only two, linearly independent eigenvectors.
Linearly independent means that one is not a multiple of another; they have different directions. The vectors’
scale factors, 15 and −5, are the eigenvalues of the matrix. They are each associated with one eigenvector.

In fact, any pair of vectors
[

2s
s

]
and

[
3t
−t

]
, as long as s, t ̸= 0, could be considered the eigenvectors

of
[

3 24
4 7

]
. We just pick a form that is as simple to write as possible.

We do not consider
[

0
0

]
an eigenvector, because it satisfies M

[
0
0

]
=

[
0
0

]
for any 2 × 2 matrix M

and isn’t very interesting. You can also justify it on the fact that it cannot have a defined eigenvalue.
We can represent any vector in the plane by adding combinations of the eigenvectors. For instance, we

can represent
[

4
7

]
as follows:
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[
4
7

]
= 5

[
2
1

]
− 2

[
3
−1

]
.

Along with the eigenvalues, this is helpful in matrix multiplication:

[
3 24
4 7

] [
4
7

]
=

[
3 24
4 7

](
5

[
2
1

]
− 2

[
3
−1

])
Substituting representation with eigenvectors

= 15 · 5
[

2
1

]
− (−5) · 2

[
3
−1

]
Distributive property

=

[
180
65

]
.

In generic terms: if a matrix M has linearly independent eigenvectors v1 and v2 with corresponding eigenval-
ues λ1

14 and λ2, then for any vector v with an representation with eigenvectors v = av1 + bv2,

Mv = λ1av1 + λ2bv2.

An issue still remains: I just gave you the eigenvectors. How does one find the eigenvalues and eigenvectors
of a matrix in the first place? This turns out to be relatively easy algebraically, but we’ll try to develop some
geometric intuition first.

1. Consider the matrix equation
[

0 1
6 1

] [
x
y

]
=

[
y

6x+ y

]
=

[
x′

y′

]
. We wish to find an eigenvector

[
x
y

]
.

(a) On graph paper, draw what the matrix
[

0 1
6 1

]
does to the vectors

[
1
0

]
and

[
0
1

]
.

(b) In your picture, draw a rough line through the origin where you think a family of eigenvectors may
be.

(c) Try some lattice points, say
[

1
1

]
,
[

1
2

]
,
[

1
3

]
,
[

1
4

]
,
[

1
5

]
. What does the matrix transform

each vector into?

(d) Which of these is an eigenvector?

(e) Does it lie near the line you drew earlier?

2. This guess-and-check process for finding eigenvectors is terrible, so let’s develop a procedure to find
the eigenvalues and eigenvectors for any 2× 2 matrix. We will use the same example.

[
0 1
6 1

] [
x
y

]
= λ

[
x
y

]
Definition of eigenvector

= λ

[
1 0
0 1

] [
x
y

]

=⇒
([

0 1
6 1

]
− λ

[
1 0
0 1

])[
x
y

]
=

[
0
0

]
Subtraction and factoring

=⇒
[
−λ 1
6 1− λ

] [
x
y

]
=

[
0
0

]

(a) If
[

x
y

]
̸=
[

0
0

]
, then

det

[
−λ 1
6 1− λ

]
= 0.

Why? Think inverses.

14This is the Greek letter lambda. It is traditionally used for eigenvalues.
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(b) Find the above determinant in terms of λ and solve for the eigenvalues.

(c) One eigenvalue is λ = 3. We solve for the associated eigenvector like so:
[

0
0

]
=

[
−λ 1
6 1− λ

] [
x
y

]

=

[
−3 1
6 −2

] [
x
y

]

=⇒
[

0
0

]
=

[
−3x+ y
6x− 2y

]

=⇒ y = 3x→
[

x
y

]
= s

[
1
3

]
. (for some s)

Solve for the other eigenvector using the other eigenvalue from part (b).

(d) Check your work by multiplying the original matrix by the eigenvector!

3. Solve for the eigenvectors and eigenvalues of the following matrices:

(a)
[

3 24
4 7

]
(b)

[
3 1
2 4

]
(c)

[
1 −1
4 6

]

4. The image of an eigenvector will have the same when acted on by the transformation for
which it is an eigenvector. The image of the eigenvector is simply the eigenvector itself multiplied by its
corresponding .

5. (a) If the transformation matrix were a reflection over a line y = x tan θ, in what directions would the
two eigenvectors point? Think geometrically.

(b) What would the angle between them be?

(c) What would their eigenvalues be?

6. Recall that multiplication by
[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]
results in a reflection over y = x tan θ.

(a) Write a matrix that results in a reflection over the line y =
√
3
3 x.

(b) Find the eigenvalues of that matrix, and the corresponding eigenvectors.

(c) Do your calculations agree with your answers to the previous problem?

(d) What are the relationships between the two eigenvectors and between the two eigenvalues?

7. (a) Write a matrix which results in a 60◦ rotation counterclockwise.

(b) Find the eigenvalues. What do you find strange?

(c) Find the eigenvectors for those eigenvalues. What’s strange about them?

(d) Explain what’s going on.

(e) What are the relationships between the two eigenvectors and between the two eigenvalues?

8. The matrix
[

1 2
0 1

]
is a shear parallel to the x axis.

(a) What vectors don’t change direction when multiplied by this matrix?

(b) What would you expect the eigenvectors to be?

(c) Find the eigenvectors and eigenvalues of this matrix.

(d) What is different this time?

(e) Can you represent every vector as sums of eigenvectors?

9. The matrices below result in some stretches. Find the eigenvectors and eigenvalues for both.
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(a)
[

2 0
0 5

]
(b)

[
3 0
0 3

]

10. Note that most 2× 2 matrices have two eigenvectors. How many would you expect to find for an n× n
matrix?

11. Assuming that p, q, r, s, t, u, x, y are real, what conditions would you impose on them in the matrices

(i)
[

3 p
q 4

]
, (ii)

[
x −2
3 y

]
, and (iii)

[
r s
t u

]
to have...

(a) ... two real eigenvalues?
(b) ... two complex eigenvalues?
(c) ... only one eigenvalue?

12. (a) Write a 3× 3 matrix showing a rotation of θ around the z axis.
(b) Name the real eigenvector (this shouldn’t require any work).
(c) Find all three eigenvectors.

13. (a) What should the absolute value of an eigenvalue of any rotation matrix be?
(b) The complex eigenvalues relate to the angle of rotation. What is that relationship?

14. In a right-handed coordinate system, rotations in three dimensions are performed by combinations of
the three matrices

X =




1 0 0
0 cosα − sinα
0 sinα cosα


 , Y =




cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


 , Z =




cos γ − sin γ 0
sin γ cos γ 0
0 0 1


 .

Each matrix X,Y, Z rotates around the x, y, z axes by α, β, γ, respectively.

In 2D, rotations combine to make other rotations. Similarly, if we combine any number of these rotations,
the net result will be a rotation about some axis—though not necessarily a coordinate axis. Another way
to picture this is that if we operate on an origin-centered sphere with these matrices, there will always
be two opposite points15 on the sphere which have no net movement.

Try computing the following products:

(a) XY (b) XZ (c) Y X (d) ZX

15. (a) Without matrices, consider a cube with side length 2 at the origin so its faces are perpendicular to
the coordinate axes. Rotate it, first 90◦ counterclockwise about the y axis, then 90◦ counterclock-
wise about the x axis. Note that rotations are done facing from the “positive side” of the coordinate
axis. The net result should leave two vertices fixed. Which two?

(b) Write a vector for the axis of rotation.
(c) How many degrees do you think the net rotation of the cube is? Be careful; the answer is not 180◦.
(d) Let’s check our answers using matrices. Write a matrix product that corresponds to a rotation of

90◦ about the y axis, followed by 90◦ about the x axis.
(e) Multiply out the matrix product.
(f) Remember that the real eigenvector in a rotation gives the axis of rotation, and the complex eigen-

values give information about the net rotation. Evaluate these and check your answers for (a) and
(b).

16. Here are two rotation matrices:

i.




2
3 − 2

3 − 1
3

1
3

2
3 − 2

3
2
3

1
3

2
3


, ii.




7
9

4
9

4
9

− 4
9 − 1

9
8
9

4
9 − 8

9
1
9


.

(a) What is the determinant of each matrix? (Don’t work, think!)
(b) What is true of each row and each column?
(c) Find the axis of rotation associated with each matrix.
(d) Find the angle of rotation associated with each matrix.

15These are often called antipodes.
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